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A three-dimensional numerical model is developed to simulate the process of collision
between an evaporative droplet and a high-temperature particle. This phenomenon
is of direct relevance to many engineering process operations, such as fluid catalytic
cracking (FCC), polyethylene synthesis,and electronic materials coating. In this study,
the level-set method and the immersed-boundary method are combined to describe the
droplet–particle contact dynamics in a fixed Eulerian grid. The droplet deformation
is captured by one level-set function while the solid–fluid boundary condition is
imposed on the particle surface through the immersed-boundary method involving
another level-set function. A two-dimensional vapour-layer model is developed to
simulate the vapour flow dynamics. Equations for the heat transfer characteristics
are formulated for each of the solid, liquid and gas phases. The incompressible
flow-governing equations are solved using the finite-volume method with the ALE
(arbitrary Lagrangian Eulerian) technique. The simulation results are validated
through comparisons with experimental data obtained from the new experimental
set-up designed in this study. An important feature of the droplet impacting on a
particle with film boiling is that the droplet undergoes a spreading, recoiling and
rebounding process, which is reproduced by the numerical simulation based on the
model. Details of the collision such as spread factor, contact time and temperature
distribution are provided. Simulations are also conducted to examine the effects of the
particle size and the collision velocity. Although the value for the maximum spread
factor is larger for a higher impact velocity and for a smaller particle, the contact
time is independent of the impact velocity and particle size. Both the normal collision
and the oblique collision are considered in this study.

1. Introduction
Many engineering process operations involve the collision of liquid droplets with

solid particles at high temperatures. In the petroleum industry, a fluid catalytic
cracking (FCC) riser with an evaporative liquid jet is designed to provide effective
liquid–solid contact and hence an increased rate of catalytic reactions in the riser.
In the riser reactor, liquid hydrocarbon at a low temperature is injected from feed
nozzles located at the bottom of the reactor, and the droplets formed from the spray
are in contact with high-temperature fluidized catalyst particles (Fan et al. 2001).
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Figure 1. Various modes of droplet–particle collisions (Zhu et al. 2000).

The vaporized hydrocarbon then carries the catalyst particle up through the riser.
In the feed nozzle region, the size of the formed droplets can be comparable to or
significantly larger than the size of the particle. With the droplets and particles of
different sizes having different momentum at contact, the collision of the particles and
the droplets may experience different contact modes (figure 1) (Zhu, Wang & Fan
2000). Smaller droplets may rebound from the surface of a larger particle upon impact
because of the nature of the non-wetting contact (Mode 1 in figure 1). A smaller
particle may penetrate or be retained inside the larger droplet (Mode 3 in figure 1).
Droplets may splash during the impact (Mode 2 in figure 1) or remain attached to the
particle surface after the collision, thereby intensifying particle aggregation (Mode 4
in figure 1). Thus, understanding the droplet and particle contact mechanics is crucial
to an accurate account of the momentum and heat transfer processes between the
droplets and particles, and is important to the prediction of hydrocarbon product
distributions in the light of catalytic or thermal cracking reactions in the riser.

The droplet–particle collision processes in feed nozzle conditions are always
accompanied by intense evaporation. In an FCC riser reactor, since the temperature
of the catalytic particle is much larger than the saturation temperature of the oil
droplet, the hydrocarbon vapour generated from evaporation forms a thin vapour
layer which may prevent direct contact between the droplet and the particle. Under
this condition, the non-wetting contact may take place during the collision marking
the film-boiling regime, or Leidenfrost regime (Gottfried, Lee & Bell 1966). A feature
of the contact in the Leidenfrost regime is that the heat flux at the contact area is
significantly smaller than that in the nucleate boiling regime and the transition-boiling
regime, even though the temperature gradient across the vapour layer is higher. The
vapour layer hinders the heat transfer from the solid to the droplet.
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This study attempts to develop a three-dimensional model based on the level-set
approach and the immersed boundary method to simulate the collision of a droplet
with a superheated particle in the film-boiling condition. The free surface of the
deformable droplet and the rigid surface of the solid particle are captured by two
separate level-set functions in a fixed regular Eulerian grid. The immersed boundary
method is applied to impose the solid–fluid boundary condition at the particle
surface. The governing equations for the droplet and the surrounding gas phase are
solved using the finite volume method with the ALE (arbitrary Lagrangian Eulerian)
technique. A two-dimensional vapour-layer model is developed on a boundary-layer
coordinate to simulate the vapour flow dynamics inside the micro-scale vapour layer
between the droplet and the particle. The heat transfer equations for the gas phase
and the particle phase are solved by considering the energy balance at the solid–
vapour and vapour–liquid interfaces. Experiments are also conducted to substantiate
the model and the simulation results based on the model obtained in this study.

2. Survey of previous studies
Extensive experiments were conducted to study the droplet impact on a flat surface

under the film-boiling condition in the literature (e.g. Wachters & Westerling 1966;
Inada, Miyasaka & Nishida 1985; Chandra & Avedisian 1991; Hatta et al. 1997).
The Weber number, defined by We = ρU 2

0 d0/σ , was found to be able to characterize
the droplet collision dynamics (Wachters & Westerling 1966). The Leidenfrost
temperature was determined as the temperature when the non-wetting contact occurs
as the surface temperature increases (Chandra & Avedisian 1991). The hydrocarbon
droplet (n-heptane) was found to have a much lower transition temperature than the
water droplet (Qiao & Chandra 1996). When the surface temperature is above the
Leidenfrost temperature of the liquid, the dynamics of the droplet were found to be
independent of the surface materials (Hatta et al. 1997). The effects of the initial
droplet temperature, which characterizes the subcooling degree of the droplet, on the
behaviour of the film-boiling impact were also reported (Inada et al. 1985; Chen &
Hsu 1995; Ge & Fan 2006).

Numerical simulations were performed to describe the droplet impingement on an
isothermal flat wall (e.g. Harlow & Shannon 1967; Fukai et al. 1995; Pasandideh-
Fard et al. 1998; Bussmann, Mostaghimi & Chandra 1999, 2000; Zheng & Zhang
2000; Francois & Shyy 2003; Mehdi-Nejad, Mostaghimi & Chandra 2003). In these
simulations, the numerical techniques used to solve the moving-interface problem
generally related to two basic methods: the front-tracking method and the front-
capturing method. The front-tracking method includes the adaptive-grid finite-element
method (Fukai et al. 1995) and the immerse boundary method (IBM) (Francois &
Shyy 2003). In the front-tracking method, the interface is explicitly described by
a discrete set of markers or by a set of deformable structured mesh points. The
interface motion is tracked by the advection of the Lagrangian markers in a flow
field. The front-capturing method, on the other hand, includes the volume of fluid
(VOF) method (Pasandideh-Fard et al. 1998; Bussmann et al. 1999) and the level-set
method (Zheng & Zhang 2000). In the front-capturing method, the moving front
is implicitly represented by a scalar function defined on Eulerian mesh points. The
advection equation of a scalar function, which is the fluid volume fraction (VOF
method) or the level–set function (level-set method), is solved to trace the interface
movement. The interface force such as the surface tension force is incorporated in the
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flow momentum equation as a source term using the continuum surface force (CSF)
method (Brackbill, Kothe & Zemach 1992).

The front-capturing method was coupled with the heat transfer model to solve the
problem involving the droplet impact on a superheated flat surface with evaporation
(Karl et al. 1996; Fujimoto & Hatta 1996; Harvie & Fletcher 2001a, b; Chizhov &
Takayama 2004; Ge & Fan 2005). A two-dimensional Marker-and-Cell (MAC) type
solution method was used by Fujimoto & Hatta (1996) and an alternative no-slip and
free-slip boundary condition was applied to the solid surface in the droplet spreading
and recoiling stages. Karl et al. (1996) applied a free-slip boundary condition and
employed a contact angle of 180◦ on the solid surface to simulate the impact of
small ethanol droplets (100–200 µm) on the wall in the superheating condition. The
two-dimensional VOF method was used to account for the rebound of the droplet
from the surface. Harvie & Fletcher (2001a, b) combined a two-dimensional VOF
algorithm with a one-dimensional axisymmetric vapour flow model to simulate the
liquid droplet evaporation from a hot solid surface. Ge & Fan (2005) developed a
three-dimensional numerical model based on the level-set method and finite-volume
technique to simulate the saturated droplet impact on a superheated flat surface. A
two-dimensional vapour flow model was coupled with the heat transfer model to
account for the vapour flow dynamics induced by the Leidenfrost evaporation. This
model was also extended to predict the subcooled droplet impact in which the initial
temperature of the droplet is lower than the saturated temperatures of the liquid (Ge &
Fan 2006). The transient heat transfer behaviour inside the droplet and the solid was
calculated with the kinetic slip treatment applied to the boundary condition at the
liquid–vapour and vapour–solid interface, which modified the continuum boundary
relationship. The predicted droplet dynamics and the heat transfer rate at the surface
from this model matched well with the experimental data reported in the literature.

The theoretical description of the process of evaporative liquid droplets in collision
with high-temperature particles is difficult owing to the complex interplay among
hydrodynamic and thermodynamic factors, such as deformable interface, moving
solid boundary, heat transfer and phase changes. Little has been reported in the
literature concerning such a description. In the numerical analysis, the droplet and
particle surface movement in the flow field must be accurately simulated with the flow
boundary condition at the particle surface to be satisfied. As the axisymmetric normal
collision represents only one of many possible droplet–particle contact scenarios, a
three-dimensional simulation accounting for the oblique collision is necessary. Also,
the heat transfer resistance and the micro-scale hindering force induced by the vapour
layer from liquid evaporation must be considered in the simulation model.

3. Experimental methodology
The schematic diagram of the experimental set-up is shown in figure 2. The main

experimental apparatus consists of a syringe, blunt-point needles of 17 gauge, 21
gauge and 27 gauge (corresponding to 1.067, 0.495 and 0.191 mm nominal inner
diameter, respectively), and brass solid particles of sizes 5.5 mm and 3.2 mm. The
brass particle is heated on a heating plate with adjustable temperature settings. The
syringe is covered with two layers of insulation to prevent external heating of the
liquid from the plate heater. The initial droplet and the surrounding atmospheric
air are at room temperature. A high-speed camera capable of capturing 500 frames
per second is used to record the droplet–particle collision process. Two light sources
are used to illuminate the particle and droplet from both the front and the back. A
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Figure 2. A schematic diagram of the experimental set-up.

light diffuser is placed in front of the backlight source to provide soft background
lighting. A small hole is drilled along the axis of the brass particle. A state-of-the-
art fast-response type T thermocouple constructed from 0.15 mm mineral insulated
cable is inserted from the bottom and through the centre of the particle to the
particle surface. The thermocouple tip is flush mounted with the particle surface. A
separate experiment was conducted to substantiate the thermocouple response time by
exposing the thermocouple set-up in boiling water at 100 ◦C. This experiment reveals
a response time on average of ∼2.0 ms. The fast response time for the thermocouple
is crucial to the measurement of the rapid temperature change on the particle surface,
which is at a time scale of ∼10 ms, during the collision process. Different sizes of
droplets are formed by different needle sizes of the syringe. Small droplets can also
be formed with the aid of acoustic forces. By changing the height of the syringe,
a wide range of Weber number for both the normal and oblique collisions can be
established.

Based on the video frames, the droplet–particle contact area and the droplet height
relative to the particle are measured.

4. Mathematical model and numerical method
In this study, we developed a numerical model to describe the unsteady three-

dimensional fluid-flow phenomena for the droplet impact on a particle surface with
evaporation. This model is built on the level-set method (Osher & Sethian 1988) and
immersed boundary method (Peskin 1977) to address effectively the three-dimensional
droplet deformation and the solid-boundary problems at the particle surface with a
fixed Cartesian mesh. In this model, two level-set functions are defined to represent
the droplet interface (φd) and the moving particle surface (φp). The evaporation effect
is accounted for by the vapour pressure force, which is calculated in a dynamic vapour
flow model. The energy balance equations in each phase are solved with interface
boundary conditions to yield the temperature distribution and the evaporation rate.



316 Y. Ge and L.-S. Fan

4.1. Level-set method for capturing droplet surface

The droplet free surface is taken as the zero in the droplet level-set function φd(x, t),
which is defined as:

φd(x, t) > 0 for x outside droplet,
φd(x, t) < 0 for x inside droplet,
φd(x, t) = 0 for x at interface.

⎫⎬
⎭ (1)

The advection equation given below for the droplet level-set function (φd) is solved
to capture the motion of the droplet surface.

∂φd

∂t
+ V Γ · ∇φd = 0, (2)

where V Γ is the velocity on the interface and t is time. Based on the experimental
results of Wachters & Westerling (1966) on droplet impact, the mass loss of the droplet
due to evaporation during a short contact process is negligibly small (<0.5 % of the
total droplet mass). After updating the droplet level-set function (φd) at each time
step using (2), an iterative re-distancing procedure is performed to set the level-set
function to be equal to the distance function and to maintain the mass conservation
of the droplet (Sussman et al. 1998).

With the droplet surface described by the level-set function, the computational
domain is treated as a single fluid in a Eulerian frame and the density and viscosity
of the flow are defined as:

ρ = ρl + H (φd)(ρg − ρl), (3)

µ = µl + H (φd)(µg − µl), (4)

where ρl and ρg are the density of the liquid and gas, respectively; and µl and µg

are the viscosity of the liquid and gas, respectively. H(φ) is a smoothed Heaviside
function and is defined as (Chen & Fan 2004):

H (φ) =

⎧⎪⎪⎨
⎪⎪⎩

0 if φ � −ε,

φ + ε

2ε
+

sin(πφ/ε)

2π
if |φ| � ε,

1 if φ � ε,

(5)

where ε is the thickness of the interface, which is a distance value relative to the grid
space.

In the simulation, both liquid and gas phases are treated as incompressible. The
equations of conservation of mass and momentum for this three-phase flow system
can be given by:

∇ · V = 0, (6)

ρ

(
∂V
∂t

+ ∇ · V V
)

= −∇p + ρg + ∇ · (2µD) + σκ(φd)δ(φd)∇φd + Fp(φp) + Fvapour, (7)

where V is the fluid velocity; ρ = ρ(φd) is the fluid density defined by (3); µ = µ(φd) is
the fluid viscosity defined by (4); g is the acceleration due to gravity σ is the surface
tension coefficient; and D is the rate of deformation tensor. The surface tension force
is included in this model as a body force using the continuum surface model (CSM)
(Brackbill et al. 1992). δ(φd) is the one-dimensional delta function and κ(φd) is the
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curvature of the free surface defined as (Sussman et al. 1998):

κ(φd) = ∇ · ∇φd

|∇φd| . (8)

The CFDLIB code is used to solve the hydrodynamic equations. An explicit time-
marching, cell-centred ICE (implicit continuous-fluid Eulerian) numerical technique is
employed to solve the governing equations (equations (6)–(7)) (Kashiwa et al. 1994).
The computation cycle is split into two distinct phases: a Lagrangian phase and
a remapping phase, in which the ALE (arbitrary Lagrangian Eulerian) technique
is applied to support the arbitrary mesh motion with fluid flow. If φn

d = φd(x, tn)
and V n = V (x, tn) are the cell-centred level-set function and the velocity at time tn,
respectively, the numerical procedures to solve V n+1 and φn+1

d at tn+1 = tn + 	t are
described below.

1. Compute the velocity field V n+1 by solving the governing equations (6) and (7),
using the cell-centred ICE technique and ALE technique (Kashiwa et al. 1994).

2. Solve for the convection equation of φd(x, t) (equation (2)) to obtain φ̄n+1. The
high-order (third-order) ENO (essentially non-oscillatory) scheme is used to calculate
the convective term V Γ · ∇φ based on the updated velocity field V n+1. The time
advance is accomplished using the second-order TVD (total variation diminishing)
Runge–Kutta method (Sussman et al. 1998).

3. Perform the redistance procedure to obtain the φn+1 using φ̄n+1 as the initial
value (Sussman et al. 1998).

4. Calculate the density and the viscosity of the field using equations (3)–(5) with
the updated level-set function φn+1.

In (7), the presence of the solid particle in the fluid is represented by a virtual
boundary body force field, Fp(φp), defined by the immersed boundary method, as
discussed in § 4.2. Fvapour is vapour pressure force exerted on the droplet–particle
contact area owing to the effect of evaporation, as discussed in § 4.3.

4.2. Immersed-boundary/level-set method for particle–flow interaction

The particle level-set function (φp) is defined as the signed distance from any given
point x in the Eulerian system to the particle surface:

φp = |x − xo(t)| − Rp, (9)

where x0(t) is the position vector of the centre of the particle and Rp is the particle
radius. With this definition, φp > 0 when x is outside the particle, φp < 0 when x is
inside the particle.

The immersed boundary (IB) method was originally reported by Peskin (1977) to
simulate the fluid flow in a complex geometrical configuration using a fixed Cartesian
mesh. The basic idea of the immersed boundary method is that the presence of the
solid boundary (fixed or moving) in a fluid can be represented by a virtual body
force field Fp(φp) applied on the computational grid at the vicinity of the solid–flow
interface. It is noted that the virtual body force Fp(φp) depends not only on the
unsteady fluid velocity, but also on the velocity and location of the particle surface,
which are also functions of time. There are several ways to specify this boundary
force, such as the feedback forcing scheme (Goldstein, Handler & Sirovich 1993) and
the direct forcing scheme (Fadlun et al. 2000). Considering the stability and efficiency
in three-dimensional simulation, the direct forcing scheme is adopted in this model.
In this scheme, the discretized momentum equation for the computational volume on
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Figure 3. The velocity interpolation scheme based on the particle level-set function (no-slip).

the boundary is given as:

V t+1 = V t + 	t
(
RHS t + F t

p

)
, (10)

where RHS refers to all the terms in the right-hand side of (7), except the virtual body
force Fp(φp) and vapour pressure force Fvapour, divided by fluid density ρ. The effects
of the virtual body force are to maintain the fluid velocity to satisfy the boundary
condition at the particle surface. For a free-slip boundary condition, that is:

V t+1 = Up(t) · n (11)

where Up is the particle velocity and n is the normal direction of particle surface.
Thus, the discrete virtual force can be defined as:

F t
p = (Up · n − V t )/	t − RHS t . (12)

The computational grids are generally not coincident with the location of the
particle surface. Therefore, it is most unlikely to have the surface for φp = 0 located
at a grid point. A velocity interpolation procedure must be carried out in order to
calculate the boundary force and to apply this force to the control volume close to
the immersed particle surface (Fadlun et al. 2000). In this study, a new interpolation
scheme is developed, based on the particle level-set function (φp). The scheme as
shown in figure 3 is described below.

During each time step of the simulation, the fluid–particle immersed boundary
condition is imposed on the computational cells located in a small band across the
particle surface (shown in figure 3). The thickness of this band (2ε) can be chosen to
be equal to 3∆, where ∆ is the mesh size for a uniform mesh. For a grid point (p
or q in figure 3), where the velocity components of the control volume are defined,
located in this band, that is:

ε > φp > −ε. (13)

The velocity at this grid point is to be redefined using linear interpolation based on
the velocity and particle level-set function (φp) at the neighbouring grid point (p′).
For grid point p in figure 3, located in this band but outside the particle, the fluid
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velocity (V ) at p is determined by (for no-slip boundary condition):

Vp = Up(t) +
φp

n

n∑
i

Vp′,i − Up(t)

φp′,i
, (14)

where Vp′ and φp′ are the velocity and particle level-set function, respectively, at the
p′ (in figure 3). The term n is the total number of neighbouring points. It should be
noted that only the neighbouring grid points located outside the band are chosen to
interpolate the velocity at point p. The velocities at these points (p′) are obtained by
solving the Navier–Stokes equation in the same manner as those far away from the
interface. It can be seen that when φp = 0, i.e. the grid point p is right on the particle
surface, the velocity at p is equal to the particle velocity: Vp = Up(t).

The velocity at grid point q , which is located inside the small band (2ε) and
inside the particle (figure 3), is determined by the neighbouring grid point outside the
particle:

Vq = Up(t) +
φq

m

m∑
i

Vp,i − Up(t)

φp,i

, (15)

where m is the total number of the neighbouring grid points which are located outside
the particle.

4.3. Vapour layer model

For the film boiling impact simulation, a microscale vapour-layer model is required
to determine the evaporation-induced pressure force Fvapour on both the droplet side
and the moving particle side. Ge & Fan (2005) developed a two-dimensional model
to simulate the dynamics of the vapour flow between the droplet and the flat surface
considering the inertial force of the vapour. In this study, this model is extended to
simulate the vapour flow within the particle–droplet contact area.

As the vapour flows along the spherical surface of the particle, a boundary-layer
coordinate (ξ, λ, ω) (figure 4) is employed to describe the vapour-layer equation. In
this coordinate, the Navier–Stokes equations for incompressible vapour flows with
gravitation terms neglected are given by:

∂uξ

∂ξ
+

cot(ξ/R)

R
uξ +

2

R
uλ +

∂uλ

∂λ
= 0, (16)
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uξ

∂uξ

∂ξ
+ uλ

∂uξ

∂λ
+

uξuλ

R
= − ∂

∂ξ

(
P

ρ

)
− ν

(
∂2uλ

∂ξ∂λ
− 2

R

∂uξ

∂λ
− ∂2uξ

∂λ2

)
, (17)

uξ

∂uλ

∂ξ
+ uλ

∂uλ

∂λ
−

u2
ξ

R
= − ∂

∂λ

(
P

ρ

)
+

ν

R

[
R

∂2uλ

∂ξ 2
− ∂uξ

∂ξ
− R

∂2uξ

∂ξ∂λ

+ cot

(
ξ

R

)(
∂uλ

∂ξ
− uξ

R
− ∂uξ

∂λ

)]
, (18)

where uξ , uλ are the vapour flow velocities in the ξ and λ directions, respectively.
Considering that the thickness of the vapour layer (∼µm) is much smaller than the

radius of the droplet and the particle (∼mm), the momentum equations of the vapour
flow can be simplified based on the order of magnitude analysis as given by:

uξ

∂uξ

∂ξ
+ uλ

∂uξ

∂λ
= − ∂

∂ξ

(
P

ρ

)
+ ν

∂2uξ

∂λ2
, (19)

∂

∂λ

(
P

ρ

)
= 0. (20)

The boundary conditions are:

λ = 0, uξ (ξ, 0) = uλ(ξ, 0) = 0,

λ = δ, uξ (ξ, δ) = ul(ξ ), uλ(ξ, δ) = uλδ(ξ ),

ξ = 0,
∂

∂ξ
= 0; ξ = ξb, p = pb,

⎫⎪⎪⎬
⎪⎪⎭

(21)

where ul(ξ ) is the droplet surface velocity in the ξ -direction; δ is the vapour-layer
thickness; uλδ(ξ ) is the local vapour velocity; ξb is the radius of the extent of the
contact area; pb is the pressure of the ambient gas at the outside edge of the vapour
layer.

The inertial force of the vapour flow in the film boiling condition is of the same order
of magnitude as the viscous force and cannot be neglected. A variable transformation
is considered to solve (19) and (20):

uλ(ξ, η) = −η uλδ(ξ ),
uξ (ξ, η) = Ω(ξ ) Φ(η),

}
(22)

where η = λ/δ. The value of uλδ(ξ ) can be calculated through the energy balance
equation at the vapour–droplet interface, as discussed in § 4.4. The functions Ω(ξ )
and Φ(η) are single variables. With this transformation, the ξ momentum equation
can be converted to an ordinary differential equation (ODE). Under the condition that
the evaporation Reynolds number Reδ = δ(ξ )uλδ/ν � O(1), Φ(η) can be approximated
by including the first three terms in the power series of the general solution of the
ODE:

Φ(η) = Φδη − ϕ(ξ )η

(
1

2
− Reδ

24

)
+ ϕ(x)

(
η2

2
− Reδ

24
η4

)
. (23)

Thus, the vapour pressure distribution can be determined by:

p(ξ ) = pb +

∫ ξb

ξ

ρϕ(ξ ′) dξ ′, (24)
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Figure 5. The schematic diagram for determining the thickness of the vapour layer.

and ϕ(ξ ) is given by:

ϕ(ξ ) =
12γ

δ2
(
1 − 3

20
Reδ)

(
ūξ (ξ ) − 1

2
ulδ(ξ )

)
. (25)

The averaged velocity of the vapour can be expressed based on the continuity equation
as:

ūξ (ξ ) =
1

ξδ(ξ )

∫ ξ

0

ξ ′uλδ(ξ
′) dξ ′. (26)

At each time step, equations (24)–(26) are solved using the piecewise integration
method to obtain the averaged vapour flow velocity, ūξ (ξ ), and the vapour pressure
distribution. In this procedure, the thickness of the vapour layer (δ(ξ )) and the extent
of the layer (ξb), are obtained by a vapour-layer identification scheme based on the
particle and droplet level set functions. Figure 5 illustrates the details of the scheme.

At every time step, a series of grid points near the particle surface are first identified
to quantify the vapour layer. As shown in figure 5, these grids points are in a small
band around the surface and can be outside the surface (. . . , i−1, i, i+1, i+2, . . . ) or
inside the surface (. . . , i ′ − 1, i ′, i ′ +1, i ′ +2, . . . ). If the droplet surface is represented
by points (. . . , Pi−1, Pi, Pi+1, . . . ) in figure 5 and point Pi is located on the mesh line
between the mesh knots i and i ′, the vapour-layer thickness at Pi can be calculated
based on the values of the level-set function at i and i ′, defined as (φd,i, φp,i) and
(φd,i ′, φp,i ′), respectively. Since the level-set function is the signed distance from the
computation knots to the droplet and particle surface after the redistance process is
performed, the vapour-layer thickness (δi) at Pi can be estimated by:

δi =
φd,i + φp,i + φd,i ′ + φ.p,i ′

2
(27)

The uλδ(ξ ) is calculated by:

uλδ(ξ ) = ṁ/ρv − ∂δ(ξ )

∂t
, (28)

where the local evaporation rate ṁ is defined by the heat transfer model. The vapour
pressure force simulated by this model is applied as an interface force exerted on the
computational cells on the bottom surface of the droplet.
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4.4. Heat transfer model

The heat transfer model is applied to calculate the temperature distribution inside
the particle and in the gas phase. Inside the particle, the heat conduction equation is
given by:

∂Ts

∂t
= αs∇ · ∇Ts, (29)

where αs is the thermal diffusivity of the particle. When the particle surface is in
contact with the droplet through the vapour layer, the boundary condition at the
particle surface is given by:

kv

Tp,surface − Td,surface

δ
= −ksnp · ∇pTs (30)

where Tp,surafce, Td,surface are the surface temperatures of the particle and the droplet,
respectively; kv, ks are the heat conductivity of the vapour phase and the solid
particle, respectively; np is the normal vector of the particle surface,∇pTs is the
temperature gradient which is evaluated only on the particle side. Similarly to the
velocity interpolation at the particle surface discussed in § 4.2, this boundary condition,
(30), is imposed on the computational grid point, which is located in a small band
(2ε) near the particle surface on the solid side (figure 3). The temperatures defined
at such grids are recalculated at each time step based on the temperature at the
neighbouring grid points to satisfy the boundary condition given by (30).

Since the vapour layer is very thin, the temperature distribution in the vapour
phase can be simplified to a one-dimensional equation in boundary-layer coordinates
(Harvie & Fletcher 2001a, b):

∂2Tv

∂η2
= 0. (31)

The radiative heat transfer across the vapour layer is neglected when the solid
temperature is lower than 700 ◦C (Harvie & Fletcher 2001). Neglecting the radiative
heat transfer across the vapour layer, the energy balance equation on the liquid–
vapour interface can be given as:

kv

Tps − Tds

δ
= −kd

∂Td

∂η
+ ṁLc, (32)

where kd is the thermal conductivity of the liquid droplet.

5. Results and discussion
Droplet–particle collision conditions under which experiments are conducted are

simulated in this study. In the experiments, acetone droplets with 1.6–2.2 mm diameter
impact on brass particles of 5.5 mm or 3.2 mm with We = 3 ∼ 20. Initially, the droplet
is at the saturation temperature (boiling point) of acetone. The particle temperature
is 200◦–300 ◦C, which is much higher than the boiling point of acetone, ensuring the
non-wetting contact.

The simulation is conducted on uniform Cartesian meshes (	x =	y = 	z = ∆).
The advantage of using the uniform Cartesian mesh is that it can be generated easily
and uses computational resources efficiently. Another benefit is that the computation
code can be easily written without requiring an extra cell-index system. There are
several reasons for not using the axisymmetric cylindrical meshes in this study.
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Besides the complexity, the control volume scheme used in this study requires that
each computation cell be a hexahedron. In the cylindrical coordinate, it is difficult to
arrange the cells near the symmetrical axis to satisfy this condition. Moreover, the
simulation code is developed to be capable of modelling various three-dimensional
collision cases, such as the oblique collision shown in figure 19. In such cases, the
flow field does not have any symmetrical axis, which make the axisymmetric mesh
unsuitable for such three-dimensional simulation.

The time steps (	t) are determined by the CFL (Courant–Friedrichs–Levy)
condition and other conditions including the constraints of viscous and surface tension
(Sussman, Smereka & Osher 1994). Other adjustable factors are the time step factor
(0–1) and the under-relaxation factors. With ∆ =0.005 cm and 80 × 80 × 100 grid
points, it takes 20–24 h for the Cray-X1 supercomputer at the Ohio Supercomputer
Centre (OSC) to complete a typical droplet impact case in a real-time of 15–2 ms.

The experimental video frames and the simulated images (under each one) shown
in figure 6 describe the impact of a saturated (56 ◦C) acetone droplet of 2.1 mm in
diameter on a 5.5 mm particle at 250 ◦C. The impact velocity is 45 cm s−1, which gives
a Weber number of 12. The video frames were taken using a high-speed camera.
The mesh resolution of the simulation shown in figure 6 is 0.06 mm in grid size,
which gives a CPR (cell per droplet-radius) of 17.5. Other mesh sizes are also used
to simulate the same impact case with comparisons of the results shown in figures 9
and 10.

In figure 6, the simulated three-dimensional images of the droplet and particle
are presented which show the iso-value surface at the position with zero droplet
and particle level set functions. The time indicated in the figure starts at the instant
of the collision. The figure shows that the droplet shape variations in the video
frames at various times are reproduced well by the simulation throughout the entire
collision process. The droplet undergoes spreading, recoiling and rebounding during
the contact. For both the experiments and the simulation, the results show that
during the first 5.5 ms of the impact (0–5.5 ms), a liquid film with a flattened disk
shape is formed immediately after the collision. The liquid film then spreads out on
the particle surface. This stage of droplet spreading is caused by the inertial force
which drives the liquid to flow out on the particle surface, until all the kinetic energy
of the impact is either converted to the surface energy of the deformed droplet or
dissipated by friction. The droplet film spreads to the maximum extent in about 7.5 ms
(frame 4), yielding a radius of droplet–particle contact area about 1.5 times that of
the original radius of the droplet. The liquid film then starts to shrink back to its
centre (7.5–11.5 ms) owing to the surface tension force at the edge of the film. Beyond
11.5 ms, the liquid film continues to recoil and forms an upward jet in the centre of
the droplet (11.5–17.5 ms), leading to the bouncing of the droplet up from the particle
surface (21.5–27.5 ms). The peanut-shape droplet shown in the video frame at 21.5 ms
is reproduced in the simulation.

The simulated cross-sectional images with velocity vectors of the droplet–particle
collision are shown in figure 7. The droplet and particle images are generated by
plotting the contour lines at the position with zero level set function. When the
droplet initially approaches the solid surface, the bottom surface of the droplet is first
flattened by the vapour pressure (0–1.5 ms). Frame 2 shows that the spreading speed
of the liquid film is close to the initial impact velocity of the droplet. As the droplet
continues to spread on the particle surface, the fluid mass starts to accumulate at
the leading edge of the liquid film (5.5 ms). The velocity field in the image at 8.8 ms
indicates that the inward flow starts from the outer edge of the liquid film, which
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Figure 6. Experimental video frames and simulated images of the 2.1 mm acetone droplet
impact on the 5.5mm particle at 250 ◦C. The impact velocity is 45 cm s−1, and We = 12. The
unit for the coordinates is cm.

confirms that the recoiling flow is driven by the surface tension. The vapour layer
between the droplet bottom surface and the particle surface is roughly visible during
the recoiling process (8.8–11.0 ms). At 17.2 ms after the collision, the droplet rebounds
away from the particle, and the droplet contact with the particle ceases.

The droplet dynamics during the collision can be described quantitatively by two
parameters: the spread factor (rc/r0) and the dimensionless heights of the centre of
gravity (Hc/r0). The term r0 is the initial radius of the droplet; rc is the radius of the
contact area of the droplet with the solid surface. The rc and Hc are defined in figure 8.
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Figure 7. A simulated cross-sectional velocity field for the impact given in figure 6. The unit
for the coordinates is cm.

In the simulation, the height of the centre of gravity is obtained by:

Hc =

∑
φ<1.5∆

diρi

∑
φ<1.5∆

ρi

, (33)
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Figure 8. The definition of the spread factor and droplet height of the centre of gravity.
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Figure 9. The simulated spread factor of the droplets during the impact shown
in figure 6 at different mesh sizes.

where di is the distance between cell i and the particle surface, which is equal to the
particle level-set function (φp); ρi is the density of the fluid in cell i.

In order to test the effects of the mesh size on the simulation results, the droplet–
particle collision process shown in figures 6 and 7 is simulated for four different
mesh sizes including 0.08, 0.07, 0.06 and 0.05 mm. The corresponding CPRs (cells
per droplet radius) for these mesh sizes are 13.2, 15, 17.5 and 21.0, respectively. The
quantitative comparisons of the simulation and measurement results are given in
figures 9 and 10.

The simulated spread factors for different meshes are shown in figure 9 with the ex-
perimental values. The experimental data are taken based on the results from the
video frames in figure 6. The general agreement between the experiments and the
simulations for these mesh sizes is good. The effect of the mesh sizes on the spread
factor is not significant before 2 ms, and becomes notable after 2 ms. The peak on
the spread factor is seen to occur at 4.0–6.0 ms, corresponding to the maximum
extent of the droplet spreading on the surface. The simulated contact time of the
droplet–particle is around 16–18 ms, which is close to the experimental results and
the first-order vibration period of the oscillating drop (Ge & Fan 2005).
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Figure 10. The simulated height of the centre of gravity of the droplets during the impact
shown in figure 6 for different mesh sizes.

Figure 10 shows the dimensionless height of the centre of gravity of the droplet
simulated at different mesh sizes. All curves reach their minimum at about 4.0–6.0 ms,
corresponding to the time when the droplets have spread to their maximum extent
on the surface. It can be seen that the mesh size in the simulation affects only the
recoiling process, and the simulation on a coarser mesh (0.07 and 0.08 mm grid size)
gives a lower height during the rebounding of the droplet. The agreement between
the experimental and the simulation results with smaller mesh size (0.05 and 0.06 mm
meshes) is good for the entire collision process.

In addition to droplet dynamics, the thermodynamic aspects of the particle–droplet
collision are also important to account for the droplet evaporation process. The
simulated temperature distribution inside the particle during the process of droplet–
particle collision is shown in figure 11. The temperature variations on the particle
surface and inside the particle at four different locations are shown in figure 12. The
measured particle surface temperature in the experiments is also shown in figure 12.
Recognizing that the thermocouple response time is 2ms, the early part of the
measured temperature curve, where the surface temperature is most likely to change
very rapidly, might be attenuated. The simulated total heat transfer rate and average
heat flux on the particle surface are shown in figure 13. The thickness and shape of
the vapour layer between the droplet and particle is found to be similar to that for
the droplet impact on the flat surface, which was described in Ge & Fan (2005, 2006).

The temperature field in the cross-section of the particle is shown in figure 11 for the
droplet–particle collision conditions given in figures 6 and 7. The initial temperature
of the particle is 250 ◦C. Immediately after the first droplet–particle contact (1.5 ms),
the temperature drop inside the particle occurs at the contact area around the impact
centre (point o in figure 4). With the spreading of the droplet on the particle surface
(frames 1 to 2), the extent of the temperature drop inside the particle increases, but
the position with a maximum temperature drop is sustained at the centre of the
contact area (frames 1 to 4). The maximum temperature drop on the particle surface
can reach ∼20 ◦C which occurs at the end of the spreading stage of the droplet (5.5–
8.8 ms). During the droplet recoiling process (8.8 ms–15.0 ms), the particle temperature
near the droplet–particle contact area recovers from its earlier drop, which is caused
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Figure 11. The simulated temperature field inside the particle for the impact shown
in figure 6.

by the heat transfer from the bulk of the particle and the decreased heat transfer
rate at the particle surface owing to the established vapour layer (also see figure 12).
If the isotherm corresponding to 249 ◦C is chosen to represent the edge of the
area undergoing the temperature drop during the impact, the extent of the particle
affected by the droplet impact continues to grow toward the inner part of the particle
throughout the entire collision process.

In figure 12, the simulated particle temperature at the centre of the droplet
impact (ξ = 0) is compared with the experimental values. Four curves represent
the temperatures at locations of different depths from the impact point on the surface
with Z as the vertical coordinate. In the experiments, the particle temperature was
measured by using a fast-response type T thermocouple inserted into the particle
surface (Z = 0) from the bottom particle. Figure 12 shows that an abrupt temperature
drop occurs on the particle surface immediately after the initial approach of the droplet
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Figure 13. The simulated heat flux at the particle surface during the impact.

surface to the solid surface. The maximum temperature drop at the particle surface
can reach ∼22 ◦C, which occurs at 3–4 ms after the collision. The temperature then
recovers at 5.5 ms, which corresponds to the transition time of the droplet movement
from the spreading to the recoiling. The temperature drop becomes less significant
at the location further beneath the surface. Although there exist small noises in the
temperature measurement results, consistency in the temperature variation between
the experimental results and the simulation results is reasonably good.

The transient heat flux at the centre of the contact area (qo) and the averaged heat
flux over the contact area (q̄) on the particle surface are shown in figure 13. The heat
flux qo quickly reaches a level of 230 Wcm−2 at 1.0–1.5 ms after the collision, and is
sustained at this level until 6.5 ms, by which time the droplet film starts to recoil (see
figure 6). The heat flux is relatively small during the droplet recoiling (6.5–11 ms),
because the vapour layer is fully established during this period, hindering the heat
transfer between the particle and the droplet. The second peak on the curve of qo
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Figure 14. Experimental video frames and simulated images of the 1.8 mm acetone droplet
impact on the 3.2 mm particle at 300 ◦C. The impact velocity is 40 cm s−1, and We = 8.

at 13 ms corresponds to the close contact of the droplet bottom surface with the
particle immediately before the droplet rebounds. The average heat flux q̄ can reach
100 Wcm−2 during the droplet spreading and can reduce to 30–40 Wcm−2 during the
droplet recoiling.

Both the simulation and experiments are performed for particles and droplets of
different sizes. The collision process shown in figure 14 involves an acetone droplet of
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Figure 15. Simulated rc/r0 and Hc/r0 for droplet impacts on the particles of different
diameters and comparison with measured r/r0.

1.8 mm in diameter and a brass particle of 3.2 mm in diameter at 300 ◦C. The collision
velocity is 40 cm s−1. The mesh size used in this simulation is 0.05 mm. Comparing
the simulated results with the video frames, it can be seen that the entire process of
droplet spreading, recoiling and rebounding is represented well by the simulation. In
the spreading process (at 0–4.5 ms), the droplet expands along the particle surface
and more fluid accumulates at the leading edge, forming a ring structure (4.5 ms).
Compared to the collision case with a larger (5.5 mm) particle (figure 6), the liquid
droplet can flow down and cover a larger fraction of the particle surface owing
to a higher curvature of the small particle considered in this case. The recoiling
of the droplet driven by the surface tension is less dramatic (4.5–10.5 ms), and the
elongation of the droplet during the rebounding (10.5–16.5 ms) is smaller compared
to the collision process shown in figure 6.

The dynamics of the droplet during its collision with particles of different sizes are
examined. The spread factors (rc/r0) and the dimensionless heights of the centre of
gravity of the droplet (Hc/r0) for collisions with the particles of 3.2 mm and 5.5 mm
in diameter are compared in figure 15. With other conditions identical to those given
in figure 14, the simulation results indicate that during the early stage of the droplet
spreading (0–4 ms), rc and Hc are almost the same for both particles. Later, it can be
seen that the droplet for the smaller particle spreads to a larger extent on the particle
surface. Although the spread factors are different for collisions with two different
particle sizes during the recoiling period, the contact times of the droplet with the
surface of both particles are very similar (∼14.5 ms), and can be estimated by the
first-order vibration period of the droplet. The variations of Hc/r0 in figure 15 also
show that the droplet rebounds higher from a larger particle surface. The measured
rc/r0 in the experiments from this study is also illustrated in figure 15, which confirms
the trends obtained from the simulation.

The computation is further extended to analyse the effects of the collision velocity
on the hydrodynamic and thermodynamic aspects of the collision process. The
simulation is conducted for three cases with collision velocities of 25, 40 and 60 cm s−1,
corresponding to Weber numbers of 3, 8 and 18, respectively. In these cases, the
particle size used is 5.5 mm and other conditions remain the same as those shown in
figure 14. The simulation results are given in figures 16, 17 and 18.
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Figure 18. Averaged heat flux at the particle surface during the impact with different impact
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The variations of rc/r0 and Hc/r0 with time during the collision at different velocities
are given in figure 16. The curves of Hc/r0 show that the height of the centre of
gravity of the droplet reaches its minimum at about 3.5–4.5 ms, corresponding to its
time when the droplet spreads to its maximum extent on the particle surface. The
impact at a larger impact velocity yields a lower height of centre of the gravity during
the spread, but reaches a higher rebounding height.

It is also seen in figure 16 that for all three different velocities, rc/r0 reaches zero
at t ∼14.5 ms. The comparison of these curves indicates that although the maximum
spread factor is larger for the impact with a higher impact velocity, the contact time
appears to be independent of the impact velocity. Wachters & Westerling (1966)
suggested that the contact time for a liquid droplet impact on a hot flat surface
was independent of the impact velocity, and could be estimated by the first-order
vibration period of the droplet as given by:

τ = πRd

√
ρlRd

2σ
. (34)

The estimated contact time by (34) for this case is 13 ms, which is close to the
simulated values for all three impact velocities (∼14.5 ms). Richard, Clanet & Quéré
(2002) studied the impact of a droplet on a super-hydrophobic surface under the

isothermal condition, and found the contact time to be τ =
√

ρlR
3
d/σ . The expression

of the contact time has a similar form to that of Wachters & Westerling (1966);
however, the contact time of Richard et al. is smaller than that of Wachters &
Westerling by a factor of π/

√
2. Although both studies concern the non-wetting

impact of a droplet on a surface, the non-wetting conditions for the surfaces are
different. The non-wetting is provided by a vapour layer for the former and by the
super-hydrophobicity of the surface for the latter. Evidently, the slip vapour-layer
surface in the case of Wachters & Westerling (1966) would yield a wider spread area,
hence a longer contact time, compared to the non-slip solid surface in the case of
Richard et al. (2002). We have shown that for droplet impact on a hot particle whose
size is comparable to the droplet, the estimation for the contact time in Wachters &
Westerling (1966) is still applicable.

The effect of the collision velocity on the heat transfer at the particle surface is
illustrated in figures 17 and 18. The total heat transfer rate (Q) at the particle surface
for three collision velocities is shown figure 17. The value for Q is calculated by
integrating the heat flux across the contact area of the droplet and the particle. It
is found that the collision with a higher relative velocity gives a higher heat loss
of the particle because the higher collision velocity yields a larger spreading extent
(figure 16). Most (80 %–90 %) of the heat loss of the particle takes place during the
period of the first 6–7 ms of the impact, for a total contact time of 14–15 ms. The
larger contact area in the spreading process is the reason for the higher heat transfer
rate in this period. Based on the total heat transfer rate (Q) shown in figure 17, the
total heat transferred between the droplet and the particle during the collision can
be calculated. For three cases with collision velocities of 25, 40 and 60 cm s−1, the
total heat transferred is of 0.16 J, 0.018 J and 0.022 J, respectively. Assuming all of
this heat energy is consumed by the liquid evaporation, the vaporized liquid mass is
of 0.0162 mg, 0.0182 mg and 0.0223 mg, which are equivalent to, respectively, 0.42 %,
0.48 % and 0.59 % of the total droplet mass.

The averaged heat fluxes (q̄) over the contact area during the collisions for three
impact velocities are compared in figure 18. It is noted that the q̄ curve for a higher
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Figure 19. Experimental video frames and simulated three-dimensional images of the
oblique collision of the 1.9 mm acetone droplet with the 5.6 mm brass particle.

collision velocity has an earlier peak. Relatively, the peak value for the heat flux curve
is less dependent on the collision velocities. For three collision velocities, the heat
fluxes first reach a higher level during the spreading process, then sharply decrease
and gradually level off at a later stage of the recoiling process.

Considering an oblique collision between a droplet and a particle, there is no axis
of symmetry for the flow. In this case, only the three-dimensional model is capable
of carrying out the simulation. Figure 19 shows both simulated three-dimensional
results and experimental video frames of an oblique collision between a 1.9 mm
acetone droplet and a 5.5 mm brass particle at a velocity of 40 cm s−1. The initial
temperature of particle is 300 ◦C. The offset of the centres of the droplet and the
particle is 0.4 mm. The cross-sectional images with the simulated temperature field of
this oblique collision are given in figure 20. The simulation is run on a 160 × 120 × 100
mesh, which gives a mesh size of 0.05 mm.

Comparing the simulation with the experimental results, it can be seen that the
droplet dynamics, including the evolution of its shapes, are reproduced well by the
computation. In the first 4.0 ms of the impact (frames 1 to 3), the droplet spreads out
immediately after the contact, in a manner similar to the normal collision, and the
location of the centre of the disk-like liquid film shifts along the particle surface away
from the initial contact point. When the droplet reaches the maximum diameter at
6.0 ms, the liquid film starts to retreat back to its centre (frames 4 to 6) owing to the
surface tension force induced from the periphery of the droplet. During this process,
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Figure 20. Simulated temperature fields during the oblique impact process shown
in figure 19.

the droplet continues slipping on the particle surface. After the droplet rebounds
from the particle surface (frames 7 to 9), the displacement of the droplet from its
initial collision position is significant, even if the offset is very small (0.4 mm) at the
beginning. This can be considered as evidence of the indirect contact of the liquid
and solid under the film boiling condition, which gives a free-slip boundary condition
on the particle surface.

Figure 20 shows the calculated temperature distributions for the collision process
shown in figure 19. During the entire process, the bulk of the liquid droplet remains
at its saturated temperature. Inside the particle, the temperature drop occurs near the
contact area. As the liquid film shifts on the particle surface, the location with the
maximum temperature drop inside the particle also shifts with the contact area.
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6. Conclusions
The three-dimensional computational model developed in this study is capable

of reproducing the droplet–particle collision process with significant heat transfer
and phase change (evaporation). The level-set method and the immersed-boundary
method are combined to describe the droplet–particle contact dynamics in the fixed
Eulerian grid. The heat transfer properties in each phase are solved with a micro-
scale vapour flow model which is applied to determine the vapour pressure force
during the contact process between the droplet and the superheated particle. Droplet
collision with the smaller particle spreads to a larger extent on the particle surface,
but rebounds higher from a larger particle surface. Although a larger impact velocity
gives a larger spreading extent, the contact time of the droplet on the particle surface
is almost independent of the impact velocity. The heat flux on the particle surface
reaches a higher level during the spreading process, and then sharply decreases during
the recoiling process. In the oblique collision, the displacement of the droplet from
its initial collision position is significant, even though the offset of the centres of the
droplet and the particle is very small at the beginning of the droplet–particle contact.
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by the Ohio Supercomputer Centre.
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